Review of Methods for Evaluating Important Change in Patient-Reported Pain Measures

Kathleen W. Wyrwich, Ph.D.
Saint Louis University
Brief Outline

1. Underlying Issues of Interpreting Group vs. Individual Change

3. Perspective of Different Stake Holders

5. Methods for Interpreting Change
 - Anchor-Based
 - Distribution-Based

6. Challenges Ahead
 - Should We Put the “C” in MICD...and How?
Underlying Issues of Interpreting Group vs. Individual Change

4 Points
Group vs. Individual Change

Point 1

1. Group change evaluation methods are often based on mean differences that satisfy a statistical criterion ($p < .05$)

- paired t-tests
- repeated measures
- ANOVA and ANCOVA
- general estimating equations (GEE)
1. Achieving the statistical significance standard ($p<.05$) is dependent on
 - the variation (σ^2) and
 - sample size (n).
1. Meaningful individual change cannot be extracted from statistically significant group change because:

we cannot infer that each individual in the “changed” group uniformly experienced the group mean change.
Group vs. Individual Change

Point 4

1. Meaningful individual change cannot be extracted from statistically significant group change because:

the statistical threshold for a significant group change may have no relation to a meaningful or clinically relevant difference for individual patients
A Comparison of Osteopathic Spinal Manipulation with Standard Care for Patients with Low Back Pain

G. Andersson, T. Lucente, A. Davis, R. Kappler, J. Lipton, S Leurgans

NEJM 1999
Andersson et al.

Intervention Group
(n = 83)
– osteopathic manual therapy

Control Group
(n = 72)
– standard medical therapies

Outcomes--Change on:
• Roland–Morris Questionnaire
• Oswestry
• VAS pain scale
Outcomes

Baseline to 12 week follow-up on

• Roland–Morris Questionnaire (0–24)
• Oswestry Questionnaire (0–50)
• VAS pain scale (0–100)

All better(=0) to worse scales
Andersson et al.

<table>
<thead>
<tr>
<th>Scales</th>
<th>Baseline</th>
<th>Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>Con.</td>
</tr>
<tr>
<td>RMQ</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Oswestry</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>VAS</td>
<td>49</td>
<td>45</td>
</tr>
</tbody>
</table>

No differences significant at the p < .05 level
What Do We Know About Change in Pain From These Results?

- Did everyone in both groups change about 23-26 mm on the VAS Pain Scale?
- Was the statistically non-significant change in these scales meaningful or important to the enrollees?

If only a few more patients had been enrolled would change on any of these scales reached statistical significance?

If 1000 patients were enrolled in this trial, how small could the pre-post change be and still achieve statistical significance?
What Do These Results Tell Us About Meaningful Change Among the Patients Enrolled?

Not Very Much!
Foundation of Clinical Significance vs. Statistical Significance

Statistically significant (or non-Significant!) group change does not necessarily imply a meaningful difference for patients.

But how big is a “meaningful differences”?
Why are Individual Change Standards Needed?
• To meaningfully interpret how interventions and treatments effect HRQoL, and to improve the quality of patient management.

• To classify a patient's change, based on the standard, as:
 – improved
 – stable
 – declined
• To improve estimation of the likelihood of HRQoL change through event modeling
 – polytomous regression
 – logistic regression
 – proportional hazards regression
Who are the Stakeholders in Know the Magnitude of an Important Change?
Stake Holders

- General Population
- Insurance Payers
- Governments
- Clinicians
- Pharmaceutical and Medical Device Developers
- Patients
- Regulators
- Governments
Clinically Significant Change: Patient Perspective

A change which *patients perceive as beneficial* (or detrimental) and important, and which may *prompt them to seek healthcare or request changes in their treatment in the absence of troublesome side effects and excessive costs*
Clinically Significant Change: Clinician Perspective

The smallest difference or change that leads the clinician to recommend a treatment or therapy to their patient
Clinically Significant Change: Population Perspective

Allocation of resources to maximize measurable benefits to society as a whole
Other Stakeholders?

Pharmaceutical and Medical Device Developers

Hope to demonstrate the value of their products and market these interventions in a way that improves the lives of patients
Insurance Payers

Have a financial responsibility to all of their members to understand the value of covered treatments.
Regulators

Seek to understand the consequences of new therapies
Governments

Seeks to monitor changes in health status of populations and identify the impact of treatments on populations
So…When Determining a Clinically Important Change Standard…

Perspective can influence the assessment approach and the way in which a clinically important difference is determined.
Brief Outline

1. Underlying Issues of Interpreting Group vs. Individual Change

3. Perspective of Different Stake Holders

5. Methods for Interpreting Change
 - Anchor-Based
 - Distribution-Based

6. Challenges Ahead
 - Should We Put the “C” in MICD…and How?
Interpretation of quality of life changes

Lydick, E. and Epstein, R.

Quality of Life Research 1993
Lydick and Epstein, 1993

Anchor-Based Distribution-Based
Anchor-Based Methods

- Within-Person Change
- Between-Persons Differences
- Relevant Anchors
Within-Person Studies
Jaeschke et al.

CHQ
- Dyspnea (5)
- Fatigue (4)
- Emotional Function (7)

CRQ
- Dyspnea (5)
- Fatigue (4)
- Emotional Function (7)
- Mastery (4)
1. Define a Minimal Clinically Important Difference (MCID)

“the smallest difference in a score of a domain ... that patients perceive to be beneficial and that would mandate... a change in the patient’s management.”
2. Convene a Clinical Consensus Panel

3 point Δ in Dyspnea (.6 per item)

2 point Δ in Fatigue (.5 per item)

4 point Δ in Emotional (.57 per item)
3. Measure Within-Patient Global Change Ratings

Patients are asked a global change question for each dimension.

“Has there been a change in your level of fatigue since your last visit?”

Worse About the same Better
4. If “worse” or “better” rate change on the following response scale

-7 A very great deal worse
-6 A great deal worse
-5 A good deal worse
-4 Moderately worse
-3 Somewhat worse
-2 A little worse
-1 Almost the same, hardly any worse at all
 7 A very great deal better
 6 A great deal better
 5 A good deal better
 4 Moderately better
 3 Somewhat better
 2 A little better
 1 Almost the same, hardly any better at all
5. Determine Global Change Classifications

- Minimal
- Moderate
- Large

Worse
-1 -2 -3 -4 -5 -6 -7

Better
1 2 3 4 5 6 7
6. Determine the Mean of the Change Scores for Patients with a Minimal Change

Average the dimension changes scores among those subjects with:

- a minimally better change or
- a minimally worse change
MCID Results

.43 per item in Dyspnea

.64 per item in Fatigue

.49 per item in Emotional Function
MCID Conclusion

Consensus Panel

Global Change Ratings

.6
.5
.57
.43
.64
.49

.5 per item in each dimension
Advantages of Within-Person Change Methods

- Light-Weight and Portable
- Easy to Calculate Results
Problematic Aspects of Within-Person Change
Methodological problems in the retrospective computation of responsiveness to change: the lessons of Cronbach

Norman G, Stratford P, Regehr G.

Journal of Clinical Epidemiology 1997
Reconstructive memory is poor

- systematic underestimation of initial state
- highly correlated with present state

Clinical change levels arbitrarily defined

No test-retest reliability data
Other Problems with Within-Person Studies

Small samples

Clinical Consensus Panel
 • Abstract reference to patients
 • Pooling of the CHQ and CRQ

No ratings made by the patients' own physicians
Anchor-Based Methods

- Within-Person Change
- Between-Persons Differences
- Relevant Anchors
Assessing the minimal important difference in symptoms: a comparison of two techniques

Redelmeier D, Guyatt G, Goldstein R

Journal of Clinical Epidemiology, 1996
Between-Persons Differences
Compared to this person, your energy is ______.
much better
somewhat better
a little better
about the same
a little bit worse
somewhat worse
much worse
Between-Persons Results

<table>
<thead>
<tr>
<th>CRQ Dimensions</th>
<th>MID per item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea</td>
<td>.09</td>
</tr>
<tr>
<td>Fatigue</td>
<td>.50</td>
</tr>
<tr>
<td>Emotional Function</td>
<td>.83</td>
</tr>
<tr>
<td>Mastery</td>
<td>.23</td>
</tr>
</tbody>
</table>
Between-Persons Results

- Excluding the dyspnea results
- Pooling the remaining 3 dimensions

CRQ MID Estimate

0.53

95% CI (.39 to .67)
Advantages of Between-Persons Methods

“original and innovative study... in an area that is methodologically challenging and complex”

Wright 1996
Problematic Aspects

- A cross-sectional difference is not individual longitudinal change
- “Double counts” for each pair of pts.
- Possibility of additional sources of measurement error
New Sources of Measurement Error

HRQoL Sending Signal

HRQoL Receiving Ability

Person 1

Person 2
Anchor-Based Methods

- Within-Person Change
- Between-Persons Differences
- Relevant Anchors
Determining minimally important changes in generic and disease-specific health-related quality of life questionnaires in clinical trials of rheumatoid arthritis

Kosinski M, Zhao S, Dedhiya S, Osterhaus J, Ware J

Arthritis and Rheumatism 2000
Outcome Measures: Scales of the SF-36

Relevant Anchor: Number of tender joints in arthritis patients

No Improvement: < 1% decrease in number of tender joints

Improvement: 1-20% decrease in the number of tender joints

Calculation: MCID = mean change score in each SF-36 scale among patients meeting the improvement criterion
Distribution-Based Methods

- Effect Size
- Standard Error of Measurement
Effect Size Group (δ_g)

$$\delta_g = \frac{m_2 - m_1}{s_1}$$

where

- $m_1 = \text{mean at baseline}$
- $m_2 = \text{mean at follow-up}$
- $s_1 = \text{standard deviation at baseline}$
The Effect Size of Individual (δ_i) is given by:

\[\delta_i = \frac{x_2 - x_1}{s_1} \]

where

- \(x_1 \) = score at baseline
- \(x_2 \) = score at follow-up
- \(s_1 \) = standard deviation at baseline
Effect Size Standards

<table>
<thead>
<tr>
<th>Change Type</th>
<th>Group (Cohen, 1977)</th>
<th>Individual (Testa, 1986)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Change</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Moderate Change</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Large Change</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Advantages of Individual Effect Size Standards

• Easy to calculate
• Easy to communicate
Interpretation of Changes in Health-Related Quality of Life: The Remarkable Universality of Half a Standard Deviation

Norman GR, Sloan JA, Wyrwich KW

Literature Search

Intersection of “quality of life” with:

• meaningful change, meaningful difference
• important change, important difference
• relevant change, relevant difference
• effect size
• minimally important change
• clinical significance
Criteria

- Baseline Standard Deviation
- Anchor-Based approach to determining MID or MCID
- 38 studies filled the criteria, resulting in 62 computed effect sizes
The MID estimates were remarkably close to one half a standard deviation (Mean = 0.495; SD = 0.155).

There was no clear relationship between the magnitude of the estimate (~.50) and factors such as disease-specific or generic instrument or the nature of the response scale.

Negative changes were not associated with larger effect sizes.
WHY?

A possible explanation for the consistency in these results derives from a classic paper 1956 in *Psychology Review*

“*The Magic Number Seven Plus or Minus Two: Some Limits on Our Capacity for Processing Information*”

by George Miller
• Across a wide range of unidimensional discrimination tasks (saltiness of tastes, points on a line, pitch and loudness of sounds, etc.), the limit of people’s abilities to make absolute discriminations turned out to be very consistent.

• People were capable of identifying the category of a particular stimulus (loudness of sounds, saltiness of tastes) accurately until the number of categories reached about 7 (with a range from about 5 to 9).
Miller argued that this uniformity derives from a fundamental characteristic of human information processing that he called ‘channel capacity’, related indirectly to limits on short-term memory.
• First convert “1 part in 7” to standard deviation units
• In the original (Miller) tasks, the stimuli were sampled from a rectangular distribution with a finite range
• It can be shown that for a uniform rectangular distribution 7 units wide, the standard deviation equals 2.16, so 1 part in 7, expressed in SD units, is $1 / 2.16$ or 0.46
Similarly, accounting for Miller’s “+/- 2”, for a rectangular distribution of 5 levels the SD is 1.58 and 1 in 5 is an effect size of 0.63; for a distribution 9 units wide, the SD is 2.73 and effect size is 0.36.

Thus, based on Miller’s review, the limit of human discrimination is equivalent to an effect size between 0.36 and 0.63.
• The effect sizes observed in 38 studies have a range (±1 sd) from 0.34 to 0.64.

• The range of estimates for the minimally important difference from the MID studies, expressed in SD units, corresponds almost exactly to the limit of human discrimination identified by Miller over 40 years ago.
Since nearly all of the MID measures we examined are based, one way or another, on the notion of a threshold between essentially undetectable and minimally detectable patient change, it may not be a coincidence that these disparate methods, conducted on diverse clinical populations with a wide range of instruments and different criteria, almost always arrive at a similar value.
Some Important Exceptions

• Stratford Studies

• Schwartz-2 days after chemotherapy
Distribution-Based Methods

- Effect Size
- Standard Error of Measurement
The Standard Error of Measurement (SEM)

\[\text{SEM} = s_x \sqrt{1 - r_{xx}} \]

- Fixed characteristic of a measure that is not sample-dependent
- Expressed in the original metric of the measure
What is a SEM?

Mary’s True Score
Jim’s True Score
Gary’s True Score
Kim’s True Score

What is a SEM?
How Many SEMs = Important Individual Change?

1 SEM
1.96 SEM
2.77 SEM
Linking clinical relevance and statistical significance in evaluating intra-individual changes in health-related quality of life

Wyrwich K, Nienaber N, Tierney W, and Wolinsky F

Medical Care, 1999
Further evidence supporting a SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life

Wyrwich K, Tierney W, and Wolinsky F.

Journal of Clinical Epidemiology, 1999
Using the standard error of measurement to identify important changes on the Asthma Quality of Life Questionnaire.

Wyrwich K, Tierney W, and Wolinsky F.

Quality of Life Research 2002
What is a clinically meaningful change on the Functional Assessment of Cancer Therapy - Lung (FACT-L) questionnaire?

Results from the Eastern Cooperative Oncology Group Study

Journal of Clinical Epidemiology, 2002
Is This Really All Connected?
Relationship Between One-SEM Criterion & Cohen’s effect size standards

- reflects a minimal change (.2-.5)
- rewards highly reliable scales
Effect Size For A One-SEM Change

If \(r_{xx} = .95 \) \[\Delta \text{individual} = .22 \]
If \(r_{xx} = .90 \) \[\Delta \text{individual} = .32 \]
If \(r_{xx} = .85 \) \[\Delta \text{individual} = .39 \]
If \(r_{xx} = .80 \) \[\Delta \text{individual} = .45 \]
If \(r_{xx} = .75 \) \[\Delta \text{individual} = .50 \]
Practical Suggestions for The Development Of Clinically Relevant Individual Change Standards
WHERE'S THE CLINICAL?
Incorporating Clinically Into Significant Individual Difference Standards for PROs
Clinically Significant Individual Change Standards

Needed to move PROs outcomes

From

Clinical Trial Research

To

• Routine Clinical Practice
• Clinical Decision-Making
• The value added to the clinician of measuring PROs in clinical practice or research
• How clinicians compare the accuracy and precision of PRO data relative to other clinical measures
• Methods for clinicians to interpret PRO data
Difficult Issues

• Can only patients can report PROs?

• Advantages of clinician reports
 – Retrospective Overview—beyond the moment

• Dangers of clinician reports
 – Traditional under-reporters of pain and other aspects of patient QOL
Clinically Important Changes in Health-related Quality of Life for Patients with Chronic Obstructive Pulmonary Disease

An Expert Consensus Panel Report

Kathleen W. Wyrwich, PhD, Stephan D. Fihn, MD, William M. Tierney, MD, Kurt Kroenke, MD, Ajit N. Babu, MBBS, MPH, Fredric D. Wollinsky, PhD

OBJECTIVE: Without clinical input on what constitutes a significant change, health-related quality of life (HRQoL) measures are less likely to be adopted by clinicians for use in daily practice. Although standards can be determined empirically by within-person change studies based on patient self-reports, these anchor-based methods incorporate only the patients’ perspectives of important HRQoL change, and do not reflect an informed clinical evaluation. The objective of this study was to establish clinically important difference standards from the physician’s perspective for use of 2 HRQoL measures among patients with chronic obstructive pulmonary disease (COPD).

DESIGN: We assembled a 9-person expert panel of North American physicians familiar with the use of the Chronic

KEY WORDS: quality of life; COPD; important change; consensus panel; RAND method; Delphi process.

Chronic obstructive pulmonary disease (COPD) is currently the fourth leading cause of death in the world, and a major cause of chronic morbidity. Unfortunately, clinicians cannot currently offer treatments to most COPD patients that will favorably change the course of this highly prevalent condition. Therefore, the goal of clinical management is to improve patients’ health-related quality of life (HRQoL) by relieving symptoms and enhancing functionality.² Structured and validated HRQoL instru
Other Practical Developments Suggesting That:

All Points on Pain Scales Are Not Equal
The numeric rating scale and labor epidural analgesia

Beilin Y, Hossain S, Bodian C

Anesthesia & Analgesia, 2003
Labor Pain Study

- A verbal numeric 0-10 rating scale
- In three studies, a verbal NRS score was obtained:
 - before
 - 15 min. after labor epidural analgesia
- At 15 min, the woman was also asked if she wanted more pain medication
Labor Pain Study

Results showed that when:

- NRS = 0-1 2% wanted more meds
- NRS = 2-3 51% wanted more meds
- NRS > 3 93% wanted more meds
Labor Pain Study- Implications for Clinical Differences

Would a change from 6 (before) to 4 (15 min. after) be meaningful among these women?

Would a change from 3 (before) to 1 (15 min. after) be meaningful among these women?
Revisiting IRT and How These Methods Inform Clinical Significance

Not all points on a pain scale are equal!
An Item Response Theory Based Pain Item Bank Can Enhance Measurement Precision

Lai J-S, Dineen K, Cella D, Roenn J.

Clinical Therapeutics, 2003
Applying Item Response Theory (IRT) Models to Evaluate the Scaling of VAS Pain Measure

Kosinski, M

Association for Health Services Research Workshop, 2002
Example of Perfectly Functioning Item Characteristic Curves (ICCs)
Example of Poorly Functioning Item Characteristic Curves (ICCs)

Item Characteristic Curves for 5 Response Options

Green and Gray Categories provide no unique information
Continuous Pain Measure

- Visual Analogue Scale: 100-mm Scale

How would you rate your pain?

0
No pain

100
The worst pain I can imagine
Categorical Pain Measures

What is the worst pain you experienced over the past week? (PAST PAIN)

0 1 2 3 4
 none mild moderate severe extreme

What is your pain now? (CURRENT PAIN)

0 1 2 3 4
 none mild moderate severe extreme

How much bodily pain have you had during the past 4 weeks? (SF-36 BP1)

1 2 3 4 5 6
 none very mild mild moderate severe very severe

During the past 4 weeks, how much of the time did pain interfere with your normal work (including both work outside the home and housework)? (SF-36 BP2)

1 2 3 4 5
 not at all a little bit moderately quite a bit extremely
ICC's Drawn for 10 VAS Score Categories
Conclusions

• Analysis of ICC showed VAS discriminates well at extremes

• Analysis of ICC showed VAS discriminates poorly in the middle
 – categories did not show unequivocal and unique relation to latent pain score
 – scale did not distinguish between patients differing in the level of the latent pain variable
Outcomes research: measuring the end results of health care

Clancy C. & Eisenberg J.

Science 1998
“additional work to enhance the interpretability of outcome measures, particularly in terms of clinical significance is needed to increase the usefulness of these tools.”